

Latvia Dairy Conference 2021 November 30th 2021, online

GHG Emissions **And Dairy Farming in the Future**

Dorothee.Boelling@ifcndairy.org www.ifcndairy.org

© IFCN 2021

Dorothee Boelling Senior Dairy Economist

30/11/2021

Climate Changes the (Dairy) World

1992 / '97 Earth Summits:

Rio de Janeiro: Climate on the agenda! **Kyoto:** 6-8% reduction goal (2012 vs 1990)

2015 Paris: First global + goal setting summit All countries agreed on

<2°C (1.5°C) in temperature rise

2021 Significant in efforts on CO₂ reduction

EU (Green Deal); **USA** (Climate Summit) **UN** Climate Change Conference Glasgow

Dairy and GHG emissions

- **FAO** Report "Livestock's Long Shadow"**18%** of total CO₂eq emissions from livestock
- 2010 FAO Report "GHG Emissions Dairy sector"2.7% of total CO₂eq emissions from dairy

IFCN research on dairy and carbon emissions

2008 2% of world emissions by milk production
 1st Dairy LCA model, 40 countries benchmarked
 3 PHD theses on carbon and water footprint

2018 Annual benchmark for farms in over 50 countries

2020 1st IFCN Top 20 dairy processors benchmark 50% declared carbon neutrality by 2050 https://ifcndairy.org/dairy-processor-report/

Dairy Data · Knowledge · Inspiration

Dairy Report 202

(HOS

Definitions and Wordings

GHG - Greenhouse gases¹: Gases causing global warming like CO₂, CH₄, N₂O, etc.

CO₂eq - Carbon dioxide equivalent ¹: Method to convert different GHG emissions into one unit.

Carbon neutrality: Achieved when CO_2 emissions are balanced globally by CO_2 removals.

Net-Zero emissions: Achieved when emissions of all GHG are balanced by GHG removals.

Climate neutrality: Achieved when a sector does not impact temperature rise on earth.

Country classification following UNSTATS (simplified)

Developed countries: Mainly Europe, North America, Oceania, Japan, Israel, etc. **Emerging countries** (developing countries): Mainly Africa, Latin America, Near & Middle East, Asia, etc.

Sources: Overall slide adapted from C. Emond (IDF, 2021) 1. IPCC, 2007.

Dairy & GHG Emissions – Big Picture

Status quo

2.2% Milk production on global GHG emissions^{1,2}

75% Emissions in emerging dairy countries ¹

IFCN Baseline 2020 – 2050 ²

- +50% Milk production and demand
- -28% GHG emissions / kg milk
- +8% total emissions; stable from 2030

Sources: 1. FAO,2010; 2. IFCN database, LCA model and estimation 2021.

IFCN Dairy Farm Database

Why: Estimation of dairy competitiveness and sustainability What: Collected since 2000 to compare countries internationally **How:** Typical farm concept + model TIPICAL + validation

Typical farm types in 52 countries / 90% of world milk production

Results of 5 dairy farming systems

30/11/2021

kg milk/cow/year

IFCN Methodology on Dairy GHG

Simple methodology based on farm data to calculate CO_2 eq emissions for every country in the world for the past and future

Approach

Regression function between milk yield and CO₂eq emissions

Estimation of the regression function

- Data: IFCN comparable data from dairy farming systems in 52 countries (90% of world milk production)
- Model: partial life cycle assessment until farm gate to estimate CO₂eq/kg milk

Quality of the regression function: $R^2 = 0.77$

Limitations

- Very low or high milk yield; Different production systems might be a challenge
- Not considering carbon action on farm and its impact. Over estimations.

Source: IFCN 2020; GHG estimation based on IFCN regression function between milk yield and CO2eq emissions on typical farms.

GHG Emissions per kg Milk

High emissions per kg milk are in countries with low milk yields

Sources: IFCN 2020; GHG estimation based on IFCN regression function between milk yield and CO₂eq emissions on typical farms.

Dairy GHG Emissions Today

Breakdown of dairy emissions¹

Method: IFCN GHG estimation for dairy IFCN dairy data base all countries; GHG estimation based on IFCN regression function between milk yield and CO_2 eq emissions on typical farms. Definitions: Milk delivered: Milk delivered from farm gate to dairy processors. Milk non-delivered: Milk on household farm use or sold informally in the market. 1. Average farm size excl. countries with an average farm size < 2. For Russia considered only farms delivering milk; Average farm size for US, CA, EU, UK, CH, NO, AU, NZ, JP = 37.

Dairy GHG Emissions 2000-2020

GHG emissions by segment **GHG** emissions / kg milk 2,0 4,5 1,8 4,0 1,6 3,5 1,4 billion t CO₂ eq./year 0,0 9,0 9,0 3,0 kg CO2eq /kg of milk Emerging countries, non-delivered milk³ 2,5 2,0 1,5 Emerging countries. delivered milk 1,0 0,4 0,5 0,2 □ Developed countries 0,0 2000 2010 2020 2000 2010 2020

World:

+62% milk production,
-15% CO₂eq/kg milk,
Total GHG emissions +38%

Emerging countries

+114% more milk
-26% CO₂eq emission/kg milk
Total GHG emissions +58%
=> 100% of global dairy GHG emission growth

Developed countries

+ 22% more milk produced
-18% CO₂eq emission/kg milk
Total GHG emissions = stable

Method: IFCN GHG estimation for dairy IFCN dairy data base all countries; GHG estimation based on IFCN regression function between milk yield and CO₂eq emissions on typical farms. Definitions: Milk delivered: Milk delivered from farm gate to dairy processors. Milk non-delivered: Milk on household farm use or sold informally in the market.

Method - IFCN Dairy Outlook 2050

The tool for better strategy building in dairy

What: Solid database 1996- 2020 + baseline 2020 - 2050 **How:** Done by IFCN annually since 2013 **So what?:** Comparable data => Insights => Better decisions

12 variables covered per country in the world

- Milk supply and demand and self-sufficiency ٠
- Various milk supply and demand drivers •

2040 2050

New: CO₂ equivalent emissions per kg milk •

Example Long-term Dairy Outlook Latvia 2000 - 2050

0,25

0,20

0,05

0.00

2000 2010

mill head 0,15 0,10

CO² equivalent emissions

Dairy GHG emissions 2020 - 2050

World:

+50% milk production and demand,
-28% CO₂eq/kg milk,
+8% CO₂eq emissions

Emerging countries

+67% more milk produced
-36% CO₂eq emission/kg milk
Total GHG emissions +7%

Developed countries

+26% more milk produced
-13% CO₂eq emission/kg milk
Total GHG emissions slightly growing

Method: IFCN GHG estimation for dairy IFCN dairy data base all countries; GHG estimation based on IFCN regression function between milk yield and CO₂eq emissions on typical farms. Definitions: Milk delivered: Milk delivered from farm gate to dairy processors. Milk non-delivered: Milk on household farm use or sold informally in the market.

Reducing GHG Emissions in Dairy?

Milk Production Becoming Net Zero?

Benefits of Net Zero Dairy in 2050

Overall: The dairy sector earned its licence to operate and will be part of feeding 10 billion people on earth

Millions of dairy farmers, their employees, their family members and rural areas benefit socially & economically

Dairy Processors can win in a growing market on more milk consumed (+50%) and more milk collected (+100%)

Farm input companies can win as catalysts for transformation in dairy farming systems and management

Options of GHG Reduction in Dairy

		GHG reduction ¹
1. Reductions	 Normal rate of increased efficiency 	28%
	 Methane reduction by feed additives or methane inhibitors 	5 - 10%
	 Farm management improvements 	20% ²
2. Removals	 Soil carbon sequestration 	5 - 10%
	•Planting trees on the farm	1 – 5 %
3. Avoidance	•Avoid Land Use Change	?
	 Recycle and reuse of agro-industrial waste 	?
1.4. Offset strategies	 Renewable energies (biogas, solar, wind) 	10 – 15%
	1.Carbon offsetting (buy credits)	?
1.5. New technologies &2. farming systems		?

Sources: Five options: Adapted from H. Montgomery; 1 IFCN estimation based on various sources. 2 IFCN Estimate

Economics of Reducing GHG Emissions

Economics on different GHG reduction options*

Positive: Improving GHG emissions & farm profits **Neutral**: Improving GHG emissions & profit neutral **Negative**: GHG emissions create significant costs

GHG emissions levels and reductions

Easy: From 4 to 1.4 kg CO_2 eq/kg milk Moderate From 1.4 to 0.7 kg CO_2 eq/kg milk Difficult From 0.7 to 0 kg CO_2 eq/kg milk

Wrapping up: GHG reduction in dairy by 2050

- 30% GHG/kg milk with normal technical progress realistic
- 35% GHG/kg milk possible but can create costs
- 35% by new technologies to be developed or to offset it

*Sales of "carbon credits" excluded

30/11/2021

Can reach

300 - 600

USD/ cow

Carbon Price & its Impact on Dairy

- Average carbon price 2019-2020
- Maximum carbon price 2021
- Historical carbon price

Carbon cost /100 kg milk

1. CO₂ Price reached new heights in 2021

2. Potential impact for farmers/processors ³ **Negative:** Possible tax or costs to buy carbon credits **Positive:** By reducing emissions & selling carbon credits

3. Impact can be 10 – 50% of current milk prices

Developed countries: 4 – 9 USD/100 kg milk	
Emerging countries: 9 – 19 USD/100 kg milk	

Cost at carbon price 63 USD/t - developed & emerging countries

IN

Cost at carbon price 29 USD/t – DE, US, IN

Sources: 1. Carbon Emissions Futures Historical Data from Investing.com, Fusion Media Ltd., 2021; Historical exchange rate: IFCN data. 2. IFCN estimation for Germany, USA, India (blue bars), developed countries and emerging countries (red lines), considering average levels of kg CO₂eq/kg milk. 3. Depends on political decisions to incl. or excl. agriculture, reliable CO₂eq measurement methods; Functional carbon market.

30/11/2021

Dairy & GHG Wrap-up

Net zero dairy creates benefits to billions of people

Understand dairy farming systems is key to make it

Economic impact of CO₂ price can become strong

GHG reductions for dairy classified in buckets

- 30% easy via normal technical progress
- 35% doable with effort, can create additional costs
- 35% with new technologies and new farming systems

© IFCN 2021

Questions to be answered:

Who is responsible? Who takes the lead making it happen? Who will pay for it?

Thank you for your attention!

Dorothee Boelling Senior Dairy Economist Dorothee.Boelling@ifcndairy.org

30/11/2021